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Abstract—The decay of jellyfish blooms introduces a
significant organic matter source to the local marine envi-
ronment that has still an unknown impact on the ecosystem.
In recent laboratory experiments, authors studied how the
introduction of excess organic material affects the coastal
pelagic microbiome by introducing Aurelia aurita detritus
to jars of seawater. During these experiments they have
monitored bacterial abundance, amino acids’ concentra-
tions, dissolved organic carbon, as well the build-up of some
inorganic nutrients. They have found, that about half of the
protein-rich organic matter in jellyfish detritus is almost
instantly available to microbes as dissolved organic matter.
Based on this experimental data we devised a mathematical
model of the jellyfish proteins (amino acids) degradation
caused by marine bacteria. The model is built on top of
the Monod bacterial growth model and the Luedeking-Piret
metabolite production model. In addition, we incorporated
the bacterial populations’ age to model the lag phase as
well as bacterial decay. In this paper, we demonstrate that
with the proposed model, we can sufficiently describe the
laboratory measurements.

Keywords—bacterial growth; Monod model; Luedeking-
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I. INTRODUCTION

Jellyfish blooms can significantly influence the nutrient
cycles in the ocean, and their eventual decay may result
in a large release of both organic and inorganic nutrients
[1]. As jellyfish organic matter is rich in protein [2] and
consequently in nitrogen, it may be of particular interest to
investigate how bacterial mineralization affects the local
nitrogen cycle. Fixed nitrogen is often considered one of
the limiting nutrients in marine environments [3], [4].

The Monod model is often the growth model of choice
when modelling microbial ecology [5]. The said model
is generally used to describe how a microorganism’s
specific growth rate is related to substrate concentration.
In batch systems, where the amount of substrate present
is limited, the bacterial growth can be described in several
phases: the lag phase, the exponential growth phase, the
steady-state phase, and finally, the decay phase (Fig. 1).
The lag phase occurs while the microorganism adapts
to the environment after inoculation and may be caused
by the change of temperature, culture age, and other
factors. Once the microorganism successfully adapts to
the environment, it begins to multiply exponentially. The
exponential growth may come to its end because of one

The authors would like to acknowledge the financial support of
Slovenian Research Agency (ARRS) in the framework of the research
core funding No. P2-0095 and project J7-2599.

Figure 1. A sketch of bacterial growth phases. lnX is the natural
logarithm of bacterial biomass. The phases are as follows: 1 — lag
phase; 2 — exponential growth phase; 3 — steady-state phase; 4 —
decay phase.

or several of the following factors: product inhibition,
oxygen or substrate depletion. Following the exponential
growth phase is the steady-state phase, where no net
biomass growth can be observed due to equal amount of
decaying and newly grown microorganisms. Finally, net
biomass growth becomes negative as the biomass starts
decaying faster than it grows due to lack of available
nutrients, which marks the onset of the decay phase.

Typically used bacterial growth models incorporate the
exponential growth, and sometimes also bacterial decay
[5]. However, such models are unable to predict the lag
phase, although several approaches exist for modelling
this phenomenon [6]. These approaches however do not
incorporate cell age, for which it has been suggested that
it may affect the metabolic efficiency of the cell [7]. In
literature a model has been developed, which builds on
this idea, but it did not incorporate it specifically for the
purpose of modelling the lag phase [8].

In this paper, we develop a simple bacterial growth
model that considers biomass, as well as substrate, and
product concentrations. Following the results of experi-
ments, where a specific jellyfish species Aurelia aurita
was considered [2], we assume the amino acids being
released from jellyfish detritus to be the limiting nutrient
in marine bacteria growth, which through the process of
mineralization produce ammonium. The model incorpo-
rates the Monod growth kinetics with substrate consump-
tion, bacterial ageing and decay, as well as Luedeking-
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Piret model for product formation. Cell age is included
in the model to enable us to model the lag phase. The
model is then fitted to one set of the experimental data
and validated with another set.

II. EXPERIMENTS

Microbial degradation of dead jellyfish organic matter
was studied in a laboratory simulated scenario [2]. The
jellyfish species used in the experiments was Aurelia au-
rita . Two experiments were performed where key param-
eters, i.e. bacterial abundance, dissolved organic carbon
(DOC), dissolved nitrogen (DN), and amino acid con-
centrations, as well as inorganic nutrients’ concentrations
were monitored. Among the inorganic nutrients monitored
in the experiments were: ammonium, nitrate, nitrite, and
phosphate. Each experiment was performed in 3 parallels,
each in a separate jar of 5-10 L in volume. Additionally,
there were control experiments performed at the same
time, also in 3 parallels. The growth medium used was
filtered seawater, which contained a representative pool
of marine bacteria, and the experiments were inoculated
by the addition of a specified amount of jellyfish organic
matter. The amount of jellyfish organic matter added at
the inoculation was such that it reflected a typical decay
of Aurelia aurita [2]. Analyses of the jellyfish organic
matter suggest, that about half of it is in form of dissolved
organic matter, and the rest is particulate organic matter.
The former is almost exclusively available for the marine
bacteria on site. A significant portion of this dissolved
organic matter is in form of combined and free amino
acids.

First (E1) of the two experiments was focused on cap-
turing the whole process, including the initial exponential
growth, as well as the later bacterial decay phase, while
the second (E2) focused only on the exponential growth
phase. The time frames of the two experiments were 0-84
h, and 0-32 h, respectively. The experiments are described
in greater detail in [2].

The results of the experiments are graphed in Fig. 2,
where normalized concentrations of bacterial abundance,
amino acids, ammonium (one of the inorganic nutrients),
and DOC are plotted against time. All concentrations
are subtracted by the control experiments’ mean value
of these concentrations to better highlight the changes.
In Fig. 2a we can see that bacterial abundance follows
a typical bacterial growth curve (Fig. 1). Additionally
we can observe that amino acids, and DOC are being
consumed during the experiments, whereas ammonium
is produced. It is important to note however, that amino
acids contribute to DOC as they contain carbon. Once the
amino acids are depleted in E1, the DOC concentration
also stops dropping significantly, which suggests that
the amino acids may have been the primary or limiting
substrate involved in the growth process. A noticeable
lag phase can be observed in E2’s bacterial abundance
plot (Fig. 2b). The experiments’ results additionally in-
dicate that Pseudoalteromonas, Alteromonas, and Vibrio
species are the dominating active bacteria during the

detritus degradation, making up the majority of bacterial
abundance during the exponential growth phase and the
decay phase [2]. Although big part of jellyfish organic
matter is processed by marine bacteria within 1.5 days, the
metabolites released by these bacteria may further cause
nutrient imbalances in the local ecosystem.

Fig. 2 excludes the DN data, as they combine dissolved
organic nitrogen as well as dissolved inorganic nitrogen.
Amino acids contribute to the former, while ammonium
contributes to the latter, which makes it difficult to draw
trends from the DN data. Also excluded from the plots
are nitrate, and nitrite concentrations (both inorganic
dissolved nitrogen) Their concentrations remain mostly
unchanged throughout the experiments [2].

The experiments described above involved bacterial
growth, as well as biochemical change of a material.
They were performed in well mixed 5-10 L vessels, where
oxygen levels were kept above the critical concentration,
at which aerobic bacteria slow down their reproduction.
We can regard such as setup as a homogeneous batch
bioreactor in which an aerobic bioprocess is taking place.
In our batch bioreactor model the jellyfish detritus acts
as the substrate (S), while the bacteria stand for the
active biomass (X), and ammonium is a chemical product
of the bioprocess (P ). Although other chemical species
contribute to DOC as well, amino acids appear to be the
limiting substrate. Therefore amino acids act as S in our
model. As mentioned above, the bacteria involved in jel-
lyfish organic matter degradation are Pseudoalteromonas,
Alteromonas, and Vibrio, but for simplicity, these are all
regarded as a part of one variable X .

III. MODEL

The simplest set of balances to describe the process is
one following only X (bacterial abundance) and S (amino
acids):

dX

dt
= µ (S)X, (1)

dS

dt
= −µ (S)X

YX/S
, (2)

where we use the Monod growth model:

µ = µmax
S

KS + S
. (3)

µ is the specific growth rate of X , and µmax is the
maximal specific growth rate of X , YX/S is the biomass
yield from substrate S (how much new X appears for the
amount of S consumed), and finally KS is the Monod
substrate saturation constant, which is actually and inverse
measure of the microorganism’s (X) affinity towards S.
A sketch of Eq. (3) is displayed in Fig. 3, indicating
that at low S (S � KS → µ = µmax

KS
S) the

growth is of first order in regards to S, and at high S
(S � KS → µ = µmax) it is of zeroth order in regards
to S. The model represented by Eqs. (1)-(3) is however
incapable of reproducing the whole growth curve as there
is no decay term in X’s balance, and since all the involved
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(a) Experiment 1 results.

(b) Experiment 2 results.

Figure 2. Experimental results plotted against time. Bacterial abun-
dance — normalized bacterial abundance, Amino acids — normalized
amino acid concentration, Ammonium — normalized ammonium ion
concentration; DOC — normalized DOC concentration; a: experiment
1; b: experiment 2. The normalized values were computed as c̄t =
ct−cC

max(c)−cC
, where c is a placeholder variable representing the datasets

(Bacterial abundance, Amino acids, Ammonium, DOC), ct is c at a
discrete point in time t, cC is the average value from the control
experiments (baseline), and max(c) is the maximum value of the
dataset. The maximum values of datasets were 1.16 × 107 cells mL−1,
10 µmol L−1, and 12.2 µmol L−1 for bacterial abundance, amino acid
concentration, and ammonium ion concentration, rescpectively [2].

variables and parameters can only be positive, X can only
increase or stagnate. Therefore a decay term needs to be
introduced to Eq. (1). Additionally, in experiment 2 there
is a significant lag phase noticeable in the growth curve
(see Fig. 2), which the model above cannot reproduce if
it is using parameters obtained from a fit on experiment
1. Literature suggests that differently aged microorganism
have different µmax, and KS as their metabolic efficiency
may decrease with cell age [7], [8]. It is through this idea
that the lag phase could be modelled. We have chosen
to break down X into 3 age-groups: young, mature, and
old (represented by indices 0, 1, and 2, respectively). The
current model assumes handicaps for µmax only, and KS

is unchanged for all age-groups. The decay parameter is
also varied between the age-groups. We can also add the

Figure 3. A sketch of the specific growth rate µ against substrate
concentration S, following the Monod growth model (Eq. (3)). µ is
asymptotically approaching the maximal specific growth rate µmax, as
S increases. At low S we thus observe first order growth, and at high S
zeroth order growth. Also displayed is the Monod substrate saturation
constant, KS . It can be found at µ = µmax

2
.

product (P , ammonium) formation to the model. This
follows the Luedeking-Piret model [9]. Accounting for
these assumptions we write the following balances:

dX0

dt
=

2∑
i=0

µiXi − a?X0 − d0X0, (4)

dX1

dt
= a?X0 − a?X1 − d1X1, (5)

dX2

dt
= a?X1 − d2X2, (6)

dS

dt
= −

∑2
i=0 µiXi

YX/S
, (7)

dP

dt
= α

2∑
i=0

µiXi + β
2∑
i=0

Xi. (8)

a? is the ageing parameter, di is the decay parameter of
the i-th age-group, α is the growth associated coefficient
of the Luedeking-Piret equation, and β is its non-growth
associated counterpart. X’s age-groups have separate bal-
ances, where growth (cell division) only directly impacts
the population of young cells, whereas maturation is
achieved by the ageing coefficient a?, and finally decay
by di.

IV. RESULTS

We solve the system of Ordinary Differential Equations
(ODE) Eq. (4)-(8) with initial conditions displayed in
Table I. Initial values of X , and S are taken from
experimental results [2]. Parameters µmax, a?, KS , d,
YX/S , α, β, and w are manipulated to fit the model to E1
results.
w is an arbitrary constant used to determine the age-

distribution of the population of X (i.e. w = 0 → all
are young, w = 1 → all are old, w = 0.5 → most
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are mature, some are young and old). The fitted model
is presented in Fig. 4a, with fitted parameters listed in
Table II. This fit was obtained manually, by graphing the
model alongside the experimental results with Python. A
series of user-manipulatable sliders was programmed to
be included with the plot, which could then be manually
adjusted, while the graphs were updated in real time.

The same parameters were then used to model E2. One
can notice, that E2’s initial X is almost 8-times smaller
than E1’s, but according to the model, this did not cause
the initial lag in E2, as the model and experiment did not
agree. However, by changing w to a higher value (making
the bacterial culture older), we get the fit presented in
Fig. 4b. This adjustment can be justified by the fact,
that E1 and E2 were performed a week apart, the latter
being performed later, and with environmental samples
drawn simultaneously, therefore we can assume that the
E2 culture was indeed older.

The fits of S and P appear mostly accurate. However,
modelling the decay, and the steady-state phases of X
remains a challenge. w was successfully utilized to sim-
ulate the lag phase. In E2 the modelled S appears to fit
less accurately to the experiments, but this may very well
come down to experimental errors.

The fit results suggest that in these particular ex-
periments the bacterial doubling time (td = ln 2

µmax
) is

about 2.2 h, which seems to be in line with typical
bacterial doubling times observed in nature [10]. Also
according to the fit, on average a single bacterial cell
uses up about 8× 10−10 mol of amino acids to grow and
divide. Assuming that a model bacterium weighs about
1× 10−12 g, and its dry weight is about 40% thereof
[11], with further 50% of this dry weight being protein
[12], there should be on average about 2× 10−13 g of
protein per bacterial cell. We can estimate that on aver-

TABLE I. MODEL INITIAL CONDITIONS.

Variable E1 E2

X(t = 0) Xinit(w
2 − 2w + 1,−2w2 + 2w,w2)

Xinit 8.7 × 105 cells mL−1 1.2 × 105 cells mL−1

S(t = 0) 10 µmol L−1

P (t = 0) 0 µmol L−1

TABLE II. FITTING RESULTS* .

Parameter Value

µmax [h−1] 0.32 (0: µmax; 1: 0.95µmax; 2: 0.25µmax)

a? [h−1] 0.075

KS [µmol L−1] 2.8

d [h−1] 0.058 (0: 0.01d; 1: 0.05d; 2: d)

YX/S [cells L µmol−1 mL−1] 1.24 × 106

α [µmol mL cell−1 L−1] 6.54 × 10−7

β [µmol mL cell−1 L−1 h−1] 2.8 × 10−8

w [-] E1: 0; E2: 0.7

*Obtained by fitting the proposed model (Eqs. 4-8) onto E1 data. In
brackets 0, 1, and 2 stand for young, mature, and old age-groups,
respectively.

(a) Experiment 1 model fit results.

(b) Experiment 2 model fit results.

Figure 4. Fit results plotted with experimental results for comparison
against time. X — normalized bacterial abundance, S — normalized
amino acid concentration, P — normalized ammonium concentration.
Indices model and exp represent model and experiments’ results,
respectively. The normalized values are computed as in Fig. 2, model
values are normalized to maximum experimental values. The parameters
were first fitted to E1 results, and then the same parameters were used
to model E2. E2 fit was improved by changing the w value. These
parameters are presented in Table II.

age an amino acid’s molecular weight is about 110Da,
so converting 8× 10−10 mol to grams, we get about
7× 10−12 g of amino acids consumed by a cell before it
divides. Comparing the theoretically assumed protein con-
tent of 2× 10−13 g cell−1 with amino acid consumption
of 7× 10−12 g cell−1, we can assume that the value of
YX/S is not unreasonable, albeit this result would suggest
that most of the metabolized amino acids are not used to
build new bacteria, but rather for energy production.

V. CONCLUSION

We have presented a simple model for jellyfish detritus
decay. The model is a work-in-progress, and is looking to
be updated and improved as we move forward. Currently
the model is based on treating all bacteria involved as a
single biomass variable X , as substrate S we employed
the cumulative concentration of all amino acids, and
the lone product P considered here is ammonium. This
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simplified model is currently able to accurately capture
substrate uptake as well as product formation, and the
exponential phase of biomass growth, including the lag
phase. The model however struggles to reproduce the
plateau of the stagnant biomass growth phase, and the
biomass decay phase. Further additions to the model could
include the consideration of separate bacterial species,
several substrates, and continuous treatment of the cell
age. The improved model will also include additional
metabolites, which were omitted in this work, e.g. phos-
phate.
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